B9311-020 Introduction to Econometrics

Week 2 Lecture Notes

1 Some Discrete Distributions

- Bernoulli: X can take on two values, 0 and 1, f(1) = p and f(0) = 1 p. Thus, $f(x) = p^x (1-p)^{1-x}$
 - The parameter p indexes the distribution
 - Exercise: Work out MGF and all moments...
- Binomial: Suppose X_i , i=1,...,n are Independent and Identically Distributed (IID) Bernoulli random variables with parameter p. Let $Y=\sum_{i=1}^n X_i$. Then Y has a Binomial distribution with parameters n and p. Y can take on values 0,1,...,n. and

$$f(y) = \binom{n}{y} p^y (1-p)^{n-y}$$

where

$$\left(\begin{array}{c} n \\ y \end{array}\right) = \frac{n!}{y!(n-y!)}$$

is the number of ways that y successes can occur in n outcomes.

- Exercise: work out MGF of Y. Use: $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$ which follows from (i) $(e^{t\sum X_i} = \prod e^{tX_i})$ and (ii) independence.
 - Poisson: X takes on the values 0, 1, 2, ... with

$$f_X(x) = \frac{m^x e^{-m}}{x!}$$

This distribution is useful for modeling "successes" that occur over intervals of time. (Customers walking into a store, changes in Fed Funds Rate, etc.). Let g(x, w) denote the probability that x successes occur in a period of length w. Suppose

- 1. $g(1,h) = \lambda h + o(h)$, where λ is a positive constant, h > 0, and o(h) means a term that satisfies $\lim_{h\to 0} [o(h)/h)] = 0$
- $2. \sum_{x=2}^{\infty} g(x,h) = o(h)$
- 3. The number of successes in non-overlapping periods are independent.

When these postulates describe an experiment, then you can show (See Hogg and Craig Section 3.2) that the number of successes over a period of time with length w follows a Poisson distribution with parameter $m = \lambda w$.

* Exercise: You should be able to show the MGF is $e^{m(e^t-1)}$, and that both the mean and variance are equal to m.

2 Some Continuous Distributions

- Uniform: $f(x) = (b-a)^{-1}$ for $a \le x \le b$ and 0 elsewhere
 - MGF is

$$M_X(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$$

- Univariate Normal
 - Standard Normal (denoted N(0,1)):

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

- General Normal (denoted $N(\mu, \sigma^2)$): Let $Y = \mu + \sigma Z$ where Z is standard normal and $\sigma > 0$. Then from the change-of-variables formula

$$f_Y(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(y-\mu)^2}$$

- To compute the MGF

$$M_Y(t) = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} \exp[-\frac{1}{2\sigma^2}(y-\mu)^2 + ty]dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} \exp[-\frac{1}{2\sigma^2}\{(y-\mu)^2 - 2\sigma^2 ty\}]dy$$

$$= \exp[\frac{2\sigma^2 \mu t + \sigma^4 t^2}{2\sigma^2}] \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} \exp[-\frac{1}{2\sigma^2}(y-\mu-\sigma^2 t)^2]dy$$

$$= e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

since the integral term =1 (it is the integral of the density of a random variable distributed $N(\mu + \sigma^2 t, \sigma^2)$).

- Thus
 - 1. $E(Y) = \mu$
 - 2. $E(Y^2) = \sigma^2 + \mu^2$, so that $Var(Y) = \sigma^2$
 - 3. $E[(Y \mu)^k] = 0$, for k = 1, 3, 5, ...
 - 4. $E[(Y \mu)^4] = 3\sigma^4$
- Chi-Squared Distribution: Let Z_i , i = 1, ..., n be distributed NIID(0,1) (where NIID denotes Normal, Independent and Identically Distributed) and let $Y = \sum_{i=1}^{n} Z_i^2$. Then Y_i is distributed as a χ_n^2 random variable. The parameter n is called the degrees of freedom of the distribution

• F Distribution: Let $Y \sim \chi_n^2$, $X \sim \chi_m^2$ and suppose that Y and X are Then

$$Q = \frac{Y/n}{X/m}$$

is distributed $F_{n,m}$. The parameters n and m are called the numerator and denominator degrees of freedom.

• Students t distribution: Let $Z \sim N(0,1)$ and $Y \sim \chi_n^2$ and suppose Z and Y are independent. Then,

$$X = \frac{Z}{(Y/n)^{\frac{1}{2}}}$$

is distributed t_n . The parameter n is called the degrees of freedom of the distribution.

2.1 Multivariate Normal Distribution.

Definition: A p-dimensional random vector X is p-dimensionally normally distributed if the one-dimensional random variables a'X are normally distributed for all $a \in \mathbb{R}^p$. (See Rao page 518)

It follows from this definition that if X is p-dimensionally normally distributed, then X_i is normally distributed. The mean vector and covariance matrix of X therefore both exist. Let them be denoted by μ and Σ .

For any $a \in \mathbb{R}^p$, we get

$$E[a'X] = a'\mu$$
 and $V[a'X] = a'\Sigma a$.

Therefore

$$M_X(a) = Ee^{a'X} = M_{a'X}(1) = e^{a'\mu + \frac{1}{2}a'\Sigma a}$$

where $M(\cdot)$ denotes the moment generating function. Note that this implies that the distribution of X is completely characterized by μ and Σ . We write $X \sim N(\mu, \Sigma)$ (or sometimes $X \sim N_p(\mu, \Sigma)$).

We will now state a number of results about multivariate normal distributions. None of them will be proved. (They are proved in C. R. Rao: Linear Statistical Inference and Its Applications pp. 185–189 and pp. 519–527.

Theorem A. Let X be an p-dimensional random vector. If there exist a vector μ and a matrix Σ such that $a'X \sim N(a'\mu, a'\Sigma a)$ for all $a \in R^p$, then $X \sim N_p(\mu, \Sigma)$.

Theorem B. Let $X \sim N_p(\mu, \Sigma)$, let B be a $k \times p$ matrix and let η denote a $k \times 1$ vector, then $V \stackrel{def}{=} \eta + BX \sim N_k(\eta + B\mu, B\Sigma B').$

Theorem C. If $X_1 \sim N_p(\mu_1, \Sigma_1)$ and $X_2 \sim N_q(\mu_2, \Sigma_2)$, and X_1 and X_2 are then $X = (X_1', X_2')' \sim N_{p+q}(\mu, \Sigma)$, where

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{pmatrix}$.

Theorem D. If $X_1 \sim N_p(\mu_1, \Sigma_1)$ and $X_2 \sim N_p(\mu_2, \Sigma_2)$, and X_1 and X_2 are then $X_1 + X_2 \sim N(\mu_1 + \mu_2, \Sigma_1 + \Sigma_2)$.

Let $X \sim N_p(\mu, \Sigma)$. Also let $X = (X_1', X_2')', \mu = (\mu_1', \mu_2')',$ and

$$\Sigma = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right)$$

be the partitions of X, μ and Σ such that X_1 and μ_1 are k-dimensional and Σ_{11} is a $k \times k$ matrix, then:

Theorem E. The marginal distribution of X_1 is $N_k(\mu_1, \Sigma_{11})$.

Theorem F. If $\Sigma_{12} = 0$ then X_1 and X_2 are independent.

Theorem F can be generalized:

Theorem G. If $X \sim N_p(\mu, \Sigma)$, B is a $p \times k$ matrix, and C is a $p \times m$ matrix, then B'X and C'X are independent if and only if $B'\Sigma C = 0$.

Theorem H. The conditional distribution of X_1 given $X_2 = x_2$ is given by

$$X_1|X_2 = x_2 \sim N_k \left(\mu_1 + \sum_{12} \sum_{22}^{-1} (x_2 - \mu_2), \sum_{11} - \sum_{12} \sum_{22}^{-1} \sum_{21}\right).$$

REMARK: If Σ_{22} is singular then the Theorem H remains true, but Σ_{22}^{-1} should be interpreted as any matrix satisfying $\Sigma_{22}\Sigma_{22}^{-1}\Sigma_{22}=\Sigma_{22}$.

We define the rank of the distribution $N_p(\mu, \Sigma)$ to be the rank of the covariance matrix, Σ .

Theorem I. X is $N_p(\mu, \Sigma)$ of rank r if and only if

$$X = \mu + BU, \qquad BB' = \Sigma$$

where B is a $r \times p$ matrix of rank r and $U \sim N_r(0, I)$, i.e. the components U_1, U_2, \ldots, U_r are i.i.d. N(0, 1).

Theorem J. Suppose $X \sim N_p(\mu, \Sigma)$ and Σ has rank p. Then X has density given by

$$f(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\}, \quad x \in \mathbb{R}^p.$$

Theorem K. If $X \sim N_p(\mu, \Sigma)$ where Σ has rank p, then

$$(X-\mu)'\Sigma^{-1}(X-\mu)\sim\chi_p^2.$$

We will call a quantity of the form Y'AY a quadratic form. Without loss of generality, assume that A is symmetric. (This follows since Y'AY = Y'A'Y, so that Y'AY = Y'BY, with $B = \frac{1}{2}(A + A')$.)

Theorem L. Let $X \sim N_p(\mu, \Sigma)$. A necessary and sufficient condition that

$$Q \stackrel{def}{=} (X - \mu)' A(X - \mu) \sim \chi_k^2$$

is that $\Sigma(A\Sigma A - A)\Sigma = 0$ in which case $k = rank(A\Sigma)$.

In Theorem L, note that if Σ is of full rank, then a necessary and sufficient condition is that $A\Sigma A = A$. If $\Sigma = I$, then the condition is that $A^2 = A$ (so that A is idempotent).

Theorem M. Let $X \sim N_p(0,I)$, and assume that $Q_1 \stackrel{def}{=} X'A_1X \sim \chi_{a_1}^2$ and $Q_2 \stackrel{def}{=} X'A_2X \sim \chi_{a_2}^2$. A necessary and sufficient condition that Q_1 and Q_2 are independent is that $A_1A_2 = 0$.

Theorem N. Let $X \sim N_p(\mu, \Sigma)$. A necessary and sufficient condition that P'X and $(X - \mu)'A(X - \mu)$ are independent is that

$$\Sigma A \Sigma P = 0.$$

Theorem O. Let $X \sim N_p(\mu, \Sigma)$. A necessary and sufficient condition that

$$(X - \mu)' A_1(X - \mu)$$
 and $(X - \mu)' A_2(X - \mu)$

are independent is that

$$\Sigma A_1 \Sigma A_2 \Sigma = 0.$$

Theorem P. Let $X \sim N_n(0, I)$. Let Q_1, \ldots, Q_k be quadratic forms (in X) with matrices A_1, \ldots, A_k of rank r_1, \ldots, r_k . Assume that we can write

$$X'X = Q_1 + Q_2 + \dots, Q_k.$$

The following statements are then equivalent:

a. The random variables Q_1, Q_2, \ldots, Q_k are mutually stochastically independent and Q_j is $\chi_{r_i}^2$

b. $\sum_{i=1}^k r_i = n.$

(Theorem P is sometimes called the Fisher-Cochran Theorem.)

Theorem Q. Let $X \sim N_p(0,I)$. Let Q, Q_1, \ldots, Q_k be quadratic forms (in X) such that $Q=Q_1+Q_2+\ldots+Q_k$. Let Q be χ^2_r , let Q_i be $\chi^2_{r_i}$, $i=1,2,\ldots,k-1$, and let Q_k be nonnegative. Then the random variables Q_1, Q_2, \ldots, Q_k are mutually stochastically independent and, hence, Q_k is $\chi^2_{r_k}$ where $r_k = r - r_1 - r_2 - \ldots - r_{k-1}$.

Examples.

1. Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 . So $X = (X_1, \ldots, X_n)' \sim N_n(m, \Sigma)$, where $m = (\mu, \mu, \ldots, \mu)'$ and $\Sigma = \sigma^2 I$. Define matrices P and A by

$$P = \begin{pmatrix} n^{-1} \\ n^{-1} \\ \vdots \\ n^{-1} \end{pmatrix} \quad \text{and} \quad A = \frac{1}{\sigma^2} \begin{pmatrix} 1 - n^{-1} & -n^{-1} & \cdots & -n^{-1} \\ -n^{-1} & 1 - n^{-1} & \cdots & -n^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ -n^{-1} & -n^{-1} & \cdots & 1 - n^{-1} \end{pmatrix}$$

It is then easy to verify that $P'X = \bar{X}$ and (X - m)'A(X - m) = X'AX = (n - m)'A(X - m) $1)S^2/\sigma^2$. Now observe that $\Sigma A\Sigma P = \sigma^4 AP = 0$, so by Theorem N, \overline{X} and S^2 are independent. By Theorem B, $\overline{X} \sim N(\mu, \sigma^2/n)$. Finally it is clear that Σ is of full rank and that $A\Sigma A = A$, so by Theorem L, $(n-1)S^2/\sigma^2$ has a χ_k^2 -distribution, where $k = trace(A\Sigma) = n - 1$. Thus,

$$\frac{\frac{(\overline{X} - \mu)}{\sqrt{\sigma^2/n}}}{\sqrt{\frac{(n-1)S^2/\sigma^2}{n-1}}} = \frac{(\overline{X} - \mu)}{\sqrt{S^2/n}} \sim t_{n-1}.$$

2. Let $\varepsilon_1, \ldots, \varepsilon_n$ be a random sample from a normal distribution with mean 0 and variance σ^2 . So $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)' \sim N_n(0, \Sigma)$, where $\Sigma = \sigma^2 I$. Let X denote a $n \times k$ matrix with rank k, and let $P_X = X(X'X)^{-1}X$ and $M_X = I_k - P_X$. Let $Q_1 = (1/\sigma^2)\varepsilon' P_X \varepsilon$ and $Q_2=(1/\sigma^2)\varepsilon' M_X \varepsilon$. Then $Q_1\sim \chi_k^2$, $Q_2\sim \chi_{n-k}^2$ and Q_1 and Q_2 are independent. The result follows since P_X and M_X are idempotent, $\Sigma = \sigma^2 I$, and $P_X M_X = 0$.

1 Modes of Convergence

- In your first calculus class you discussed sequences $\{X_n\}$ and limits. Recall $\lim_{n\to\infty} X_n = X$ if for any $\varepsilon > 0 \exists N(\varepsilon)$ with $|X_n X| < \varepsilon$ for all $n > N(\varepsilon)$. We need to discuss convergence of random sequences $\{X_n(\omega)\}$ to random variables $X(\omega)$. There are a variety of notions of convergence:
 - For a given ω we can ask whether $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ using the standard definition of a limit. If the set of ω for which this limit obtains has probability 1 then we say $X_n(\omega)$ converges to $X(\omega)$ almost surely (or with probability 1).

$$X_n(\omega) \stackrel{a.s.}{\longrightarrow} X(\omega)$$
 if $P\{\omega | \lim_{n \to \infty} X_n(\omega) = X(\omega)\} = 1$

- For any $\varepsilon > 0$ we can calculate $p_n(\varepsilon) = P(|X_n - X| > \varepsilon)$. If for any value of $\varepsilon > 0$, this sequence converges to 0, then we say that X_n converges in probability to X.

$$X_n \xrightarrow{p} X$$
 if for any $\varepsilon > 0$, $\lim_{n \to \infty} p_n(\varepsilon) = 0$.

This is sometimes written as $p\lim X_n = X$.

 $-|Y-Z|^p$ for $0 is called the <math>L_p$ distance between Y and Z. X_n converges to X in the L_p norm if $\lim_{n\to\infty} \mathbf{E}(|X_n-X|^p)=0$

$$X_n \stackrel{L_p}{\to} X \text{ if } \lim_{n \to \infty} \mathbf{E}(|X_n - X|^p) = 0$$

when p=2, the convergence criterion is $\lim_{n\to\infty} \mathbf{E}(|X_n-X|^2)=0$. In this case the convergence is sometimes called mean square convergence or convergence in quadratic mean, denoted as $X_n \stackrel{ms}{\to} X$ or $X_n \stackrel{qm}{\to} X$.

- Suppose $F_{X_n}(x)$ is the CDF for X_n and $F_X(x)$ is the CDF for X. Then, in the limit X_n will have the same CDF as X if the function F_{X_n} converges to F_X . This notion of convergence is called *convergence in Distribution* or *convergence in Law*.

 $X_n \stackrel{d}{\to} X$ if $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ for all values of x where $F_X(.)$ is continuous.

- If X_n is a vector, then $X_n \stackrel{as}{\to} X$ if each element of X_n converges a.s. the corresponding element of X. Convergence in probability and L_p convergence is defined analogously. $X_n \stackrel{d}{\to} X$ if the joint CDF of X_n converges the joint CDF of X.

- 1.1 Relationships between the modes of convergence and some useful results
 - If $X_n \stackrel{L_p}{\to} X$ then $X_n \stackrel{p}{\to} X$.

Proof:

Without loss of generality set X = 0. Let $\varepsilon > 0$

$$E(|X_n|^p) = \int_{-\infty}^{\infty} |X_n|^p dF_{X_n} \ge \int_{-\infty}^{-\varepsilon} |X_n|^p dF_{X_n} + \int_{\varepsilon}^{\infty} |X_n|^p dF_{X_n}$$

$$\ge |\varepsilon|^p \left[\int_{-\infty}^{-\varepsilon} dF_{X_n} + \int_{\varepsilon}^{\infty} dF_{X_n} \right]$$

$$= |\varepsilon|^p P(|X_n| \ge \varepsilon)$$

and thus

$$P(|X_n| \ge \varepsilon) \le \frac{\mathrm{E}(|X_n|^p)}{|\varepsilon|^p}$$

so that $\lim_{n\to\infty} \mathbf{E}(|X_n|^p) = 0$ implies $\lim_{n\to\infty} P(|X_n| > \varepsilon) = 0$ for any $\varepsilon > 0$.

The result

$$P(|X_n| \ge \varepsilon) \le \frac{\mathrm{E}(|X_n|^p)}{|\varepsilon|^p}$$

is known as Markov's inequality.

- The result

$$P(|X_n| \ge \varepsilon) \le \frac{\mathrm{E}(|X_n|^2)}{|\varepsilon|^2}$$

is known as Chebyshev's inequality.

- If $X_n \stackrel{a.s.}{\longrightarrow} X$ then $X_n \stackrel{p}{\longrightarrow} X$ To prove this we need to show that for any $\varepsilon > 0$ and $\delta > 0 \;\exists\; N(\varepsilon, \delta)$ such that $P(\omega \mid |X_n(\omega) - X(\omega)| > \varepsilon) < \delta$ for n > N. For each ω with $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ we can find a $N(\varepsilon, \omega)$ such that $|X_n(\omega) - X(\omega)| < \varepsilon$ for all $n > N(\varepsilon, \omega)$. Let $N(\varepsilon, \delta)$ be the smallest of these values such that $P(\omega \mid |X_n(\omega) - X(\omega)| < \varepsilon) > 1 - \delta$, for all $n > N(\varepsilon, \delta)$. (The existence of this value of N is guaranteed by the condition that $P\{\omega \mid \lim_{n \to \infty} X_n(\omega) = X(\omega)\} = 1$). Then $P(\omega \mid |X_n(\omega) - X(\omega)| > \varepsilon) < \delta$ for all n > N as required.
- If $X_n \xrightarrow{p} X$ does not imply that $X_n \xrightarrow{a.s} X$.(See Amemiya, page 88 for a counterexample)
- If $X_n \xrightarrow{p} X$ then $X_n \xrightarrow{d} X$. (The proof is in Rao, page 122, result ix)

1.2 Slutsky's Theorem and the Continuous Mapping Theorem

- Slutsky's theorem (Rao page 122)
 - $-X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} 0$ implies $X_n Y_n \xrightarrow{p} 0$
 - Let c be a constant and suppose $X_n \stackrel{d}{\longrightarrow} X$ and $Y_n \stackrel{p}{\longrightarrow} c$
 - * $X_n + Y_n \stackrel{d}{\to} X + c$
 - $* X_n Y_n \xrightarrow{d} X_c$
 - * $X_n/Y_n \stackrel{d}{\to} X/c$, if $c \neq 0$
 - $-X_n-Y_n\xrightarrow{p}0$ and $Y_n\xrightarrow{d}Y$ then $X_n\xrightarrow{d}Y$
- Continuous Mapping Theorem (Rao, page 124)
 - Let g(.) be a continuous function, then
 - $*X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$
 - $* X_n \xrightarrow{p} X \Rightarrow g(X_n) \xrightarrow{p} g(X)$
 - * $X_n Y_n \stackrel{p}{\rightarrow} 0$ and $Y_n \stackrel{d}{\rightarrow} Y$ then $g(X_n) g(Y_n) \stackrel{p}{\rightarrow} 0$

1.3 O_p and O_p Notation

Let $\{a_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ denote two sequences of real numbers. Recall (from your Calculus class) that

$$a_n = o(g_n)$$
 if $\lim_{n \to \infty} \frac{a_n}{g_n} = 0$

and

$$a_n = O(g_n)$$
 if \exists a number M such that $\frac{a_n}{g_n} < M$ for all n

We use similar notation for random variables. Suppose now that $\{a_n\}_{n=1}^{\infty}$ is a sequence of random variables, then

$$a_n = o_p(g_n) \text{ if } \frac{a_n}{g_n} \stackrel{p}{\to} 0$$

and

 $a_n = O_p(g_n)$ if for any $\varepsilon > 0$, \exists a number M such that $P(|\frac{a_n}{g_n}| < M) > 1-\varepsilon$ for all n.

• Let $\{f_n\}$ and $\{g_n\}$ be sequences of real numbers and let $\{X_n\}$ and $\{Y_n\}$ be sequences of random variables, then

- If
$$X_n = o_p(f_n)$$
 and $Y_n = o_p(g_n)$, then

*
$$X_n Y_n = o_p(f_n g_n)$$

* $|X_n|^s = o_p(f_n^s)$ for $s > 0$
* $X_n + Y_n = o_p(\max\{f_n, g_n\})$
- If $X_n = O_p(f_n)$ and $Y_n = O_p(g_n)$, then
* $X_n Y_n = O_p(f_n g_n)$
* $|X_n|^s = O_p(f_n^s)$ for $s > 0$
* $X_n + Y_n = O_p(\max\{f_n, g_n\})$
- If $X_n = o_p(f_n)$ and $Y_n = O_p(g_n)$, then
* $X_n Y_n = o_p(f_n g_n)$

2 Laws of Large Numbers

2.1 A Weak Law of Large Numbers

• Let $X_1, X_2, ...$ be a sequence of random variables with $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2$ and $Cov(X_i, X_i) = 0$ for $i \neq j$. Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$, $\overline{\sigma}_n^2 = n^{-1} \sum_{i=1}^n \sigma_i^2$ and $\overline{\mu} = n^{-1} \sum_{i=1}^n \mu_i$ with $\lim_{n \to \infty_i} n^{-1} \overline{\sigma}_n^2 = 0$. Then $\overline{X}_n - \overline{\mu} \xrightarrow{p} 0$.

Proof:

$$P(|\overline{X}_n - \overline{\mu}| > \varepsilon) \le \frac{\mathbf{E}[(\overline{X}_n - \overline{\mu})^2]}{\varepsilon^2} = \frac{n^{-1}\overline{\sigma}_n^2}{\varepsilon^2} \to 0$$

where the first inequality follows from Chebyshev's inequality

2.2 A Strong Law of Large Number

• If X_1, X_2, \dots are with $\mathbf{E}(X) = \mu < \infty$, then $\overline{X}_n \stackrel{a.s.}{\longrightarrow} \mu$. (Proof: Rao, pages 114-115)

3 Central Limit Theorems

3.1 Characteristic Function (Rao, page 99-108)

Consider a random variable X with $CDF\ F(x)$. The characteristic function of X, denoted C(t) is given by

$$C(t) = \mathbf{E}(e^{itX}) = \int e^{itx} dF(x)$$

where $i = \sqrt{-1}$. Thus,

This change is useful because

$$e^{iz} = \cos(z) + i\sin(z)$$

so that $|e^{iz}| = 1$ for all z. This means that C(t) will always exists, while M(t) exists only for certain distributions.

Some useful results:

1. Let $\alpha_r = E(X^r)$, which is assumed to exist. Then

$$\frac{d^{r}C(t)}{dt^{r}} = i^{r} \int x^{r} e^{itx} dF(x) \text{ exists}$$

2. Suppose α_r exists, then expanding C(t) in a Taylor Series expansion about C(0) yields:

$$C(t) = C(0) + \sum_{j=1}^{r} \alpha_j \left[\frac{(it)^j}{j!} \right] + O(t^{r+1})$$

and C(0) = 1

3. Let $\phi(t) = \ln(C(t))$, then if α_r exists

$$\phi(t) = \sum_{j=0}^{r} \kappa_{j} \left[\frac{(it)^{j}}{j!} \right] + O(t^{r+1})$$

where κ_j is called the k'th cummulant. A direct calculation shows

- (a) $\kappa_1 = \alpha_1 = \mu$
- (b) $\kappa_2 = \alpha_2 \alpha_1^2 = \sigma^2$
- 4. If $X \sim N(\mu, \sigma^2)$, then $C(t) = M(it) = \exp[it\mu \frac{t^2\sigma^2}{2}]$, and thus $\kappa_0 = 0$, $\kappa_1 = \mu$, $\kappa_2 = \sigma^2$, $\kappa_j = 0$ for j > 2.
- 5. Let Z = X + Y, where X and Y are independent, then $C_Z(t) = C_X(t)C_Y(t)$
- 6. Let $Z=\delta X$, where δ is a constant. Then $C_Z(t)=C_X(\delta t)$
- 7. There is a 1-to-1 relation between F(x) and C(t)
- 8. Let $C_n(t)$ denote the CF of X_n and C(t) denote the CF of X. If $X_n \stackrel{d}{\to} X$, then $C_n(t) \to C(t)$ for all t. Moreover, if $C_n(t) \to C(t)$ for all t and if C(t) is continuous at t = 0, then $X_n \stackrel{d}{\to} X$.

3.2 A Central Limit Theorem

(Lindberg-Levy CLT): Let $X_1, X_2, ...$ denote a sequence of iid random variables with $E(X_i) = \mu$ and $var(X_i) = \sigma^2 \neq 0$. Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then

$$\frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu) \stackrel{d}{\to} N(0, 1)$$

Proof: Let $Z_n = \frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu) = \sum_{i=1}^n (\frac{X_i - \mu}{\sqrt{n}\sigma})$. Since $\mathbf{E}(\frac{X_i - \mu}{\sigma}) = 0$ and $var(\frac{X_i - \mu}{\sigma}) = 1$, the log-CF of $\frac{X_i - \mu}{\sigma}$ is $\phi(t) = -\frac{1}{2}t^2 + O(t^3)$

so that Z_n has log-CF

$$\phi_{Z_n}(t) = \sum_{i=1}^n \{-(\frac{1}{2})(\frac{t}{\sqrt{n}})^2 + O[(\frac{t}{\sqrt{n}})^3]$$
$$= -\frac{1}{2}t^2 + n \times O(\frac{t^3}{n^{1/2}}) \to -\frac{1}{2}t^2$$

which is the log-CF of a N(0,1) random variable. Since $-\frac{1}{2}t^2$ is continuous at $t=0, Z_n \xrightarrow{d} Z \sim N(0,1)$.

• Example: Suppose that X_i are *iid* Bernoulli random variables with parameter p. The CLT says that

$$\sqrt{n} \frac{(\overline{X} - p)}{(p(1-p))^{1/2}} \xrightarrow{d} N(0,1)$$

which implies that for large n

$$\sqrt{n} \frac{(\overline{X} - p)}{(p(1-p))^{1/2}} \stackrel{a}{\sim} N(0,1)$$

where "2" means "approximately distributed as". Thus

$$\overline{X} \stackrel{a}{\sim} N(p, \frac{p(1-p)}{n})$$

Suppose p = .25 and n = 100 then $P(\overline{X} \le .20)$ is $P(Y \le .20)$ where $Y = \sum_{i=1}^{100} X_i$ is distributed binomial with n = 100 and p = .25. A direct calculation shows: $P(Y \le .20) = .14$. The normal approximation gives

$$P(\overline{X} \le .20) \stackrel{a}{=} P(\frac{\overline{X} - .25}{(\frac{.25 \times .75}{100})^{1/2}} \le \frac{.20 - .25}{(\frac{.25 \times .75}{100})^{1/2}})$$

$$= P(Z \le -1.155) = .12;$$

3.3 A Multivariate Central Limit Theorem (Rao, p. 128)

Let X_n denote a sequence of $k \times 1$ random vectors. Let X denote a $k \times 1$ random vector with $X \sim N_k(0, \Sigma)$, and λ denote a $k \times 1$ vector of constants. Then a necessary and sufficient condition for $X_n \stackrel{d}{\to} X$ is that $\lambda' X_n \stackrel{d}{\to} \lambda' X$ for all λ .

3.4 The Delta Method

Let Y_n denote a sequence of random variables, and let $X_n = \sqrt{n}(Y_n - a)$, where a is a constant. Let g(.) be a continuously differentiable function. Suppose $X_n \stackrel{d}{\to} X \sim N(0, \sigma^2)$. Then $\sqrt{n}(g(Y_n) - g(a)) \stackrel{d}{\to} V \sim N(0, [g'(a)]^2 \sigma^2)$.

Proof: By the mean value theorem

$$g(Y_n) = g(a) + (Y_n - a)g'(\widetilde{Y}_n)$$