B9311-020 Introduction to Econometrics

Week 2 Lecture Notes

1 Some Discrete Distributions

o Bernoulli: X can take on two values, Oand 1, f(1) = p and f(0) = 1 —p. Thus,
flz)=p"(1-p)'""

. — The parameter p indexes the distribution

— Exercise: Work out MGF and all moments...

e Binomial: Suppose X; , ¢ =1,..,nare Independent and Identically Distributed (}ID )
Bernoulli random variables with parameter p. Let Y = S7.X;. Then Y has a

qi==]1 1
Binomial distribution with parameters n and p. Y can take on values 0,1, ..., n. and
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is the number of ways that y successes can occur in n outcomes.

where

v Excrcise: work out MGF of Y. Use: My(t) = TIf,Mx,(t) which follows from (i)
(et X =TI} and (ii) independence. '

— Poisson: X takes on the values 0,1,2, ... with

mTe~™

fx(z) =

z!
This distribution is useful for modeling “guccesses” that occur over intervals of
time. (Customers walking into a store, changes in Fed Funds Rate, etc.). Let

g(z,w) denote the probability that xsuccesses occur in a period of length w.
Suppose

1. g(1,h) = A+ o(h), where X is a positive constant, h > 0, and o(h) means a
term that satisfies lim,_glo(h)/R)] = 0
2. T2, 9(z,h) = o(h)
3. The number of successes in non-overlapping periods are independent.
When these postulates describe an experiment, then you can show (See Hogg and

Craig Section 3.2) that the mumber of successes over a period of time with Jength
w follows a Poisson distribution with parameter m = Aw.

« Exercise: You should be able to show the MGF is e™e'~1) and that both the
mean and variance are equal to m. -



2 Some Continuous Distributions

e Uniform: f(z)=(b—a) ' fora<z<bh and 0 elsewhere

-~ MGF is " ,
e -t
MX(t) = (b _ a)t
e Univariate Normal
_ Standard Normal (denoted N(0,1)):
1 1,
fz(2) = =€* ’

— Qeneral Normal (denoted N(p,0%)): Let Y = p+0Z2 where Z is standard normal
and o > 0. Then from the change-of-variables formula
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— To compute the MGF.

o 1 1
My(t) = f_ Yy exp{—5—5 (¥ — p)? + tyldy
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since the integral term =1 (it is the integral of the density of a random variable
distributed N(u + o%t,0%)).
— Thus
1. E(Y)=pu
9. E(Y?) = ¢® + %, so that Var(Y) = o?
3. E[(Y — p)¥] =0, for k=1,3,5, ...
4. E{(Y - w)*] = 30*

e Chi-Squared Distribution: Let Z;, i =1,...,n be distributed NIID(0,1) (where NIID
denotes Normal, Independent and Identically Distributed) and let Y = S, Z7. Then
Y; is distributed as a x2 random variable. The parameter n is called the degrees of
freedom of the distribution



e F Distribution: Let ¥ ~ X2, X ~ x2, and suppose that Y and X are
Then ' )
Y/n

= X/m

is distributed Fy, . The parameters n and m are called the numerator and denominator
degrees of freedom.

e Students t distribution: Let Z ~ N (0,1) and Y ~ x% and suppose Zand Y are

independent. Then, g

X =
B (¥Y/n)
is distributed t,. The parameter o 1s called the degrees of freedom of the distribution.

ol

2.1 Multivariate Normal Distribution.

Definition : A p-dimensional random vector X is p-dimensionally normally distributed if
the one—-dimensional random variables a' X are normally distributed for all a € RP. (See Rao
page 518)

It follows from this definition that if X is p-dimensionally normally distributed, then X;
is normally distributed. The mean vector and covariance matrix of X therefore both exist.
Let them be denoted by u and .

For any a € RF, we get

EldX|=dp  and Vid'X] = a'Ta.

Therefore , L
Mx(a) = Ee®X = Myx(1) = e¥#¥2° ze

where M{-) denotes the moment generating function. Note that this implies that the distri-
bution of X is completely characterized by p and T. We write X ~ N (4,%) (or sometimes
X ~ Ny, D).

We will now state a number of results about multivariate normal distributions. None of
them will be proved. (They are proved in C. R. Rao: Linear Statistical Inference and Its
Applications pp. 185-189 and pp. 519-527.

Theorem A. Let X be an p-dimensional random vector. If there exist a vector p and a
matrix ¥ such that 'X ~ N(a'p, a'Sa) for all a € RP, then X ~ Np(p, Z).

Theorem B. Let X ~ Np(p,X), let B be a k % p matrix and let 17 denote a k x 1 vector,

then

Y % n+ BX ~ Ni(n+ Bp, BEB).



Theorem C. 1f Xy ~ Np{pa, T1) and Xa ~ Ny(pe, Z2), and X3 and X, are
then X = (X}, X3)' ~ Npyq(p, Z), where - ‘

o m (% 0
““(#2) wnd E"(O 22)'

Theorem D. If Xy ~ Np(py, Z1) and Xo ~ Ny(p2,E3), and X3y and X, are
then ]
X1+ Xa ~ N + piz, £1 + X2}

Let X ~ Ny(p, B). Alsolet X = (X5, X5, p= (1, ), and

Tu X2
=
R ( 221.. .222 .

be the partitions of X, p and X such that X, and p; are k—dimensional and Ty; is a kxk
matrix, then:

Theorem E. The marginal distribution of X, is Ni(p, Zqa)
Theorem F. If T2 = 0 then X; and X, are independent.
Theorem F can be generalized:

Theorem G. If X ~ N,(u, £), B is a p x k matrix, and C is a p X m matrix, then B'X
and C'X are independent if and only if B'2C = 0.

Theorem H. The conditional distribution of X given X5 = z, is given by
X3|Xg = g ~ Ny (#1 + 1T (T2 ~ pro), L1 — 31235;31221) .

P S N W i i

REMARK: If ;5 is singular then the Theorem H remains true, but 3 should be interpreted
as any matrix satisfying YonTios Lan = Do

We define the rank of the distribution Np(g, ) to be the rank of the covariance matrix,
. '

Theorem I. X is No(u,Z) of rank r if and only if

X=p+BU, BB =%



'

where B is a7 X p matrix of rank r and U ~ N,(0,1), i.e. the components Uy, Us,..., U, are
iid. N(0,1).

" Theorem J. Suppose X ~ Np(p,Z) and % has rank p. Then X has density given by

10) = G el ge - WEE =), TR

Theorem K. If X ~ Np(p, L) where T has rank p, then

(X — W)'Z7H X — ) ~ X5

We will call a quantity of the form Y'AY a guadratic form. Without Joss of generality,
assume that A is symmetric. (This follows since Y'AY = Y'A'Y, so that Y'AY = Y'BY,
with B = LA+ A)) - - - -

- Theorem L. Let X ~ Np(p,T). A necessary and sufficient condition that
QY (X - ) AX — 1) ~ Xk
is that T(ADA — A)L = 0 in which case k = rank{AD).

In Theorem L, note that if £ is of full rank, then a necessary and sufficient condition is
that ATA = A. If & = I, then the condition is that A? = A (so that A is idempotent).

Theorem M. Let X ~ Np(0,1), and assume that Qs Y X' MX ~ X, and Qa o
X'AgX ~ x2,. A necessary and sufficient condition that @, and Q; are independent is that
A1 AQ = 0.

Theorem N. Let X ~ Npy(p,Z). A necessary and sufficient condition that P’X and
(X — p) A(X — p) are independent is that

AP = 0.

Theorem O. Let X ~ Np(u,T). A necessary and sufficient condition that
(X - @ Ay(X —p)  and (X = p) Ax(X —p)

are independent is that
TATAE =0



Theorem 'P.lLet X ~ No(0,I). Let @y,...,Qk be quadratic forms (in X) with matrices
Ay, ..., Agof rank ry, ..., Tk Assume that we can write

XX=Q+Q2+...,C

The following statements are then equivalent:

a. The random variables @, Qg, ..., &k are mutually stochastically independent and €;
is X2,

b. }:;?31 Ty =T. .

(Theorem P is sometimes called the Fisher-Cochran Theorem.)

Theorern Q. Let X ~ N,(0,1). Let Q, Q1, ..., Q% be quadratic forms (in X) such that
Q=Q1+Qz+...+Qr Let Q be X2, let Q:be xZ,i=1,2,..., k=1, and let Qi be non—
negative. Then the random variables @1, Q2, - - -, Uk are mutually stochastically independent
and, hence, Q is X7, where rg =71 —71— 72 = ...~ Tk-1-

Examples.

1. Let Xi,...,Xn be a random sample from a normal distribution with mean g and
variance o2. 8o X = (X1, ..., Xn) ~ No(m, ), where m = (i, jt, .- , iy and T = o2l
Define matrices P and A by

nt }1—n"t! —-nt . —n7!
n~! 1 —n~l 1=n"! ... —n7?
F= . and A= ) . .
: o : :
n~! B 1—nt

It is then easy to verify that P’X =X and (X - mYA(X —m) = X’AX = (n -
1)S?/o?. Now observe that TATLP = AP = 0, so by Theorem N, X and S? are
independent. By Theorem B, X ~ N(u,0%/n). Finally it is clear that & is of full
rank and that ATA = A, so by Theorem L, {n — 1)5%/0? has a xj—distribution, where
k = trace(AL) = n — 1. Thus,

(X - _
edin (X - ,u)
n—-115%/a = 2 ~ tn
e RN
2. Letey,...,En beaTandom sample from a normal distribution with mean 0 and variance

o2 Soe= (€1, En) ~ Na(0,X), where 2 = o2]. Let X denote a n x kmatrix with
rank k, and let Px = X(X'X)"'X and Mx = Ir — Px. Let Q1 = (1/0%)e' Pxe and
Qo = (1/0?)e'Mxe. Then Q@ ~ v2, Qg ~ X3_pand @, and (pare independent. The
result follows since Py and My are idempotent, L = o2, and PxMx = 0.



1 Modes of Convergence

e In your first calculus class you discussed sequences { X} and limits. Recall limy oo Xn =
X if for any € > 03 N(g) with | X, — X| < e for all n > N(e). We need to discuss con-
vergence of random sequences {X.(w)} to random variables X (w). There are a variety
of notions of convergence: :

— For a given w we can ask whether limn_.co Xa(w) = X(w) using the standard
deBnition of a limit. I the set of wfor which this limit obtains has probability 1
then we say Xa{w) converges to X (w) almost surely (or with probability 1).

Xalw) =¥ X(w) if P{lw| lim Xplw)=X(w)} =1

T For any £ > Owe can calculate pa(e) = F (1X, — X}> ¢): If for any valueof & > 0,
this sequence converges to 0, then we say that X, converges in probability to X.

X, 2 X if for any € > 0, 7}1‘_1‘13033,,(5) = (.

This is sometimes written as plimX, = X.

— [Y ~ Z|F for 0 < p < oo is called the L, distance between Y and Z. X, converges
to X in the L, norm if limp .0 E(X,—-XP)=0

X, 3 Xif Jim B(|Xa — XPP) =0

when p = 2, the convergence criterion is limpeo B(1Xn — X %) = 0. In this case

the convergence is sometimes called mean square convergenceor COMVETGENCE N
. T

quadratic mean, denoted as X, = X or X, %X

— Suppose Fx, (x) is the CDF for Xp and Fx(z)is the CDF for X. Then, in the
limit X, will have the same CDF as X if the function Fy, converges to Fix. This
notion of convergence is called convergence in Distribution or convergence in Law.

X, S Xif Jim Fx, (z) = Fx () for all values of x where Fx(.)is continuous.

— If X, is a vector, then X, 2 X if each clement of X, converges a.s. the corre-
sponding element of X. Convergence in probability and L, convergence is defined

analogously. Xn <> X if the joint CDF of X, converges the joint CDF of X.



2

‘1.1 Relationships between the modes of convergence and some
useful results

o If X, 33 X then X, & X.

Proof:
Without loss of generality set X = 0. Let € > 0

B(X.7) = / =X, PdFx, > f X PdFx, + f * | XaPdFx.,
D —o0 &

> lflp{_[_: dFx, + /:o'dFXn}
= [efP P(|Xa| 2 €)

and thus o
P(1X,| = e) £ E(|Xxl")

so that limpeo E(|X,/P) = 0implies limp_.ce P(|Xa| > &) = Ofor any £ > 0.

. — The result

E(X./?
POl 2 0) < XD
is known as Markov’s inequality.
— The result B(|X.%)
P(|an 2 5) = '_m"i“g_l;’w

is known as Chebyshev’s inequality.

o If X, %5 X then X, & X

To prove this we need to show that for any € > 0 and § > 0 3 N(g,6) such that
P(w | | Xa(w) — X(w)| > €) < & for n > N.For each w with limn—co Xn(w) = X(w)
we can find a N(e,w)such that {Xu(w) — X(w)] < ¢ for all = > N{e,w). Let N{e, 6)
be the smallest of these values such that P{w | [Xa{w) = X{w)| < g} >1—46, for
all n > N{e,6). (The existence of this value of Nis guaranteed by the condition that
P{w|liMp Xn(w) = X (W)} = 1). Then P(w | [ Xa(w)~X(w)] > ) < éforalln > N
as required.

o If X, B X does not imply that X, %% X .(See Amemiya, page 88 for a counterexam-
ple)

o If X, 5 X then X, 4, X. (The proof is in Rao, page 122, result ix)



+

1.2 Slutsky’s Theorem and the Continuous Mapping Theorem
e Sluisky’s theorem (Rao page 122)

~ X, % X and ¥, & 0 implies XY, 50
~ Let ¢ be a constant and suppose X, L XandY, D

« Xo+Ye S X+e
x XoYn -5 Xc
* Xn/YnmtiX/c, ifc#0

C X,-Y, B 0andY, 3Y then X, > Y
e Continuous Mapping Theorem (Rao, page 124)

— Let g(.)be a continuous function, then

XS X = g(Xn) S g(X)
* Xn B X = g(Xa) B g(X)
* Xp—Y, 2 0andYn 4, Y then g(Xn) — g(Yn) 20

1.3 O, and o, Notation

Let {a,}5%., and {ga}n2; denote two sequences of real numbers. Recall (from your Calculus
class) that

a, = o{g,)if lim 0
T-— 00 gﬂ

and

an = O{gn)if 3 a number M such that < M foraln

Gn

We use similar notation for random variables. Suppose now that {an}3. is a sequence
of random variables, then :

ko)

an = 0y(g:) i = 50
and
an = Op(gn) if for any € > 0, 3 a number M such that P(|~§n«»1 < M) > 1-¢ for all n.

e Let {f,} and {g.} be sequences of real numbers and let {X,} and {Y,} be sequences
of random variables, then

— If X, = 0,(f») and Y5 = 0,(gn), then



* XpYn, = Op(fngn)
* an!S == OP(f:.) fOI 8> O
* -Xn + Y‘n = Op(max{fﬂa gﬂ})
~ If X = Op(fn) and Y, = Op{gn), then
* XnYn = Op(fngn)
* | Xul® = Op(f5)for s >0
£ Xp+ Yy = Op(max{fn, gn})
— If X, = 0,(fn) and Yy, = Op(gn), then

¥ XnYn = 0p(fugn)

2 Laws of Large Numbers

2.1 A Weak Law of Large Numbers
e Let X1, Xo, ... be 4 sequence of random variables with E(X; ) = p; and Var{X;) =

o? and f’ov(X,,X) = Ofor i # j. LetX, = n™! Zz_ Xi, G2 = n Y0, 0? and
',u =n"F Ty pi with lilp e n~152 = 0. Then X, — & > 0. .
Proof:

i, 35 B

where the first inequality follows from Chebyshev’s inequality

— {

2.2 A Strong Law of Large Number

o If X1, Xy, ...are with BE(X) = p < oo, then X, &5 p. (Proof: Rao, pages 114-115)

3 Central Limit Theorems

3.1 Characteristic Function (Rao, page 99-108)

Censider a random variable X with CDF F(z). The characteristic function of X, denoted
C(t) is given by

C(t) = E(e™) = / = dF(z)
where i = /1. Thus, " " This change is useful because
€% = cos(z) + isin(z)

so that |e¥?] = 1for all z. This means that C(t) will always exists, while M (1) exists only for
certain distributions.
Some useful results:
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1. Let ay = B(X"), which is assumed to exist. Then

dr .
%z =1 / 7€ dF () exists

2. Suppose o, exists, then expanding C(t) in a Taylor Series ex;ﬁansion about C(0) yields:

o) = o) + L a1+ o)

F=1
and C(0) =1
3. Let ¢(t) = In(C(t)), then if o, exists

P

o) = -l 1+ 0™
' 3

where K;is called the &'th cummulant. ‘A direct calculation shows

(8) mpi=ar=p

(b) Ky = ap — of =07

4. X ~ N{u,o?), then C(t) = M(it) = explitpy — 3%’3], and thus ko = 0, K1 = i,
Ky = 02, k; = Ofor j > 2.

5 Let Z=X+Y,where X and Y are independent, then Cz(f) = Cx (£)Cy (2}

6. Let Z=6X, where §is a constant. Then Cz (t) = Cx(6t)

7 There is a 1-to-1 relation between F(z)and C(t)

8. Let Cp(t) denote the CF of X, and C (t) denote the CF of X. If Xp, 2, X, then Cyr(t) —
C(t)for all t. Moreover, if Cpn(t) — C(t)for all ¢ and if C{t)is continuous at ¢ = 0,

then X, = X.

3.2 A Central Limit Theorem

(Lindberg-Levy CLT): Let X 1, Xz, ... denote a sequence of iid random variables with E (X,) =
p and var(X;) = o® # 0.Let X = n~! 3%, Xi. Then

il REPES (X

Proof: . '

Let Z, = @(ﬁf,} — ) = ?zl(wxy%f). Since E(F#) = 0 and var($i#) = 1,the log-CF
of 57:1‘- is
| 4(t) = —5t*+ O



80 tﬁat 2. haslog-CF .
6,0 = SH-GH ) + Ol

1, t? 1,
which is the log-CF of a N(0,1) random variable. Since —3t* is continuous at t = 0, Zn 4

Z ~ N(0,1).
e FExample: Suppose that X; are iid Bernoulli random variables with parameter p. The

CLT says that

(X —p) 4 '
Viga—pyE o VO

which implies that for large n

(j{m - p) 2
Vigao e~ VoY

where*“2” means “approximately distributed as”. Thus
— 1
X & N(p’fﬁi_;l_mffl)

Suppose p = .25 and n = 100 then P(X < .20) is P(Y < 20) where Y = T X, is
distributed binomial with n = 100 and p = .25. A direct calculation shows: P(Y <
20) = .14. The normal approximation gives

_ . X-—25 _ 20-.25
P(X < 20)= P(W < "(.25:<.75)1/2)
100 100

= P(Z < ~-1.15%) = .12;

3.3 A Multivariate Central Limit Theorem (Rao, p. 128)

Let X, denote a sequence of kx1 random vectors. Let X denote a k x 1 rancdom vector with
X ~ Ni{0,Z), and A denote a k x 1vector of constants. Then a necessary and sufficient

condition for X, 4, X is that XX, 4 XX for all A

3.4 - The Delta Method

Let Y, denote a sequence of random variables, and let X, = /n(Y, — a), where a is a
constant. Let g(.) be a continuously differentiable function. Suppose X, £ X ~ N(0,0%).

Then v/7{g(Y,) — g(a)) = V ~ N(0, [¢'(a)’0?).

Proof: By the mean value theorem

g(Yn) = gla) + (Yn— a)gl(?n).



