B9311-020 Introduction to Econometrics
Week 3 Lecture Notes
‘ , Estimators and Hypothesis Testing

Let Y denote an n x 1 vector of observations with CDF F(y, §). Let § = g(Y") denote an
estimator of 6. :

o Example: Method of Moments Estimators find §so that sample moments of Y match
the population moments of Y.

— Let Y;, = 1,...,n be scalar NIID(u,o?) random variables. Then E(Y) = pand
E[(Y — p)?] = 0% Natural estimators are therefore

n 2
p=n"! ZY} and 5% = n! Z(K —n)?
i=1

i=1
which match sample to population moment conditions.:

— Consider a set of random variables X;, X, ..., X,,. Suppose that these variables
are serially correlated so that X; and X; are correlated for i close the j- Suppose
that we want to forecast X, using X, say as ¢.X,,, with some constant ¢. A good
choice of ¢ is one that makes X, uncorrelated with the forecast error Xnt1— 0 Xn.
That is, ¢ satisfies

‘ E[(Xnt1 — ¢Xn)Xs] =0
Thus, a method of moments estimators, say $can be constructed to solve
n—1

(n=1)7 3" (Xip1 — 6X:) Xi = 0

i=1

so that i
_ iy XinXi

n—1 2
i=1 Xi

<)

1 Properties of Estimators

o A natural question is what constitutes a “good” estimator. One way to answer this
question is to define a Loss Function, say L(f, 6) which shows the loss that occurs when
6 is used, when the true value of the parameter is §. For any 8 = 9(Y), we could then

calculate
R(8,6) = E[L(6,6)] = E[L(g(Y),6)]

the expected value of the loss. R(a, 0) is called the “Risk” Function

e A good estimator is an estimator that has small risk. The best estimator has the
smallest risk.



e Often the risk of an estimator will depend on the value of 8 (hence the notation R(8, 6))
and thus the “best” estimator will depend the value of 6. Since € is unknown we must
find an estimator that works well for a range of values of §. Examples

— If we know that § € ©, then we might try to find an estimator that solves

min max R(8, )
7 6e6

This produces a mini-max estimator.

— We might want to find an estimator that minimizes the weighted average risk
using a weight function w(€). Thus we could consider

r(@) = / R(8,6)w(6)do

which is called the average risk of 7 (or the “Bayes-Risk”). The best estimator is
the function f that minimizes ().

e A useful loss function is

L(8,0) = (6 —0)*
which is quadratic loss. The associated risk is called “mean squared error”. Since
6—06=[6—-E@®)+E®) -0)]

E[(6 - 6)"] = E{6 - E@)*} + E{[E®) - 0)]'} + 2E{[6 — E(B)][E() - 0)]}

so that R R
mse = Var(0) + [Bias())?

where the bias is defined by

-~

Bias(d) = E(6) — 6

— An estimator is unbiased if Bias(6) = 0, so that E(f) = 6.

Often it is difficult to deduce the exact distribution of an estimator, and so various

approximations based on large-sample theory are used. The relevant jargon is

e 0 is consistent if § 5 .

e fis strongly consistent if 8 23 6.

e Suppose some scaled and centered version of an estimator satisfies a CLT, i.e.,
a6 —7) % N(0,1).

where a, is sequence of real numbers (like a, = 1/n) and + is a constant. We then say
that 6 is asymptotically normal.



- If
an(f =) 5 N(0,1)
then (at least for n large) R
an(g - 7) ~ N(O: 1)

where I use the symbol ~ to denote “approximately distributed as.” Thus,

2 Cramer-Rao Inequality

The key question is how to construct good estimators. One very useful result in this regard
is the Cramer-Rao inequality, which gives a lower bound on the variance of any unbiased
estimator. First, some preliminaries:

e Suppose Y ~ F(y,0) with density f(y,6). Then

1= [ f(y.60)dy
so that, differentiating both sides, and assuming the support of Y does not depend on
0 ‘
8 6’
o Let

S(6,y) = 8ln(];§.y,0)

which is called a Score function. (When I want to emphasize dependence of this
function on 6 I will write this function as S(6).)

o Let
0?2 In[f(Y, )]

7(6) = - B 201y - _p TR0,

o0 )=

denote the Information



o Note
of(y,0)

06

=5(0,y) x f(y,6)
thus
0= /af v9) 4 _/so V) f(y, 0)dy = E[S(6,Y)]

and thus the Score function has an expected value of 0. (Note the randomness in the
score function comes from evaluating the function at the random value Y'.)

e Differentiating again, yields:
0S(0
0= [ P8V 5y, 000y + [ 506,021, 0)an

28(6,Y)
6

so that

Z2(6) = — B ) = E(S(8,Y)?) = var(S(8,Y))

e Now, let 6 = 9(Y) denote an unbiased estimator of 6. Then
0= / 9(y)f(y,0)dy
@ so that (differentiating both sides with respect to 6)
1= /g(y)S(b’,y)f(y, 0)dy

with 8 = g(Y), this implies

E(0,5(0,Y)) = Cov(8,5(0,Y)) =

so that ~
Var(6)Var(S(6,Y)) > 1
and thus .
Var(6) > =Z(6)™

~ var(S(6,Y))

which is the Cramer-Rao inequality

o The same set of results obtain when #is a k£ x 1 vector

— S5(0,Y) is a k x 1 Score vector with E(S(0,Y)) =0

— Var(S(6,Y)) = E(S(6,Y)S(8,Y)) = —E(Z8&X)) = 7(8)a k x k Information
matrix

— If § is an unbiased estimator, the E[( — 8)(8 — 8)'] > Z(6)!



3 Properties of Maximum Likelihood Estimators

e Let Y denote a random vector with density f(y,6). Then

L) = f(Y,0),

the density of Y evaluated at y = Y and viewed as function of 6 is referred to as the
Likelihood Function.

— Let Y3,Y5,...,Y, be 4id, each with density f(y,8). Then
La(0) =[] f(¥,0)
i=1

is the likelihood function.

Let
L,(0) = In(L,(6))

denote the log-likelihood function.

Suppose that 8 is a k x 1vector and let

and

denote the Score. (Note that these functions are evaluated at the random value Y. For
notational simplicity I write s;(0) instead of s;(0,Y;), etc.)

Let 95.(6
7,6) = ~B(Z50) = B(s,(0)s.(0)),

denote the information in the i'th observation,

Z(6) = E(Sn(6)Sa(6)")
denote the information in the sample, and

Za(0) =n ' S°T(0) = n”'1(0)
denote the average information.

— With independent sampling, the s;s are independent and so Z(0) = 3~ Z;(6). With
iidsamling Z;(0) = Z;(0) = Z,.(9) = Z(9), say



o Let émle solve

max L,(0)

e Some asymptotic properties of MLEs

Given a set of “regularity” conditions:

— P
emle - 90
and _ R
Z2(05)2v/1(Brmie — 65) > N(0,1)
so that R
emle ,‘l, N(GO,I(GO)‘l)
where 6,is the true value of 6.

— Sketch of consistency proof under iid sampling:
Let

C(6) = Ep,[In(f(Y, 0, + 6) — In(f (Y, 6,))]

where 0, is the true value of § and E,,  means taking the expected value using the
density f(y,0,). Then C(6) < 0 for § # 0 (the inequality will be weak only if the
distribution of Y is degenerate.) To see this

f(y,60+ 6) f(y,00+ 6)
Eo, In| f(y,6) f(y,6,)

where the first inequality follows from Jensen’s inequality (Rao, page 149) since
the log function is concave. Clearly then C(6) is maximized at § = 0. Also

] <InEy,| ]=In(1)=0

Cn(8) = n™1 Y {In(f(Yi, 6, + 6) — f(Yi,60)} & C(6)

uniformly in 6. (This is Uniform LLN result — see Gallant, A. R. (1997), An
Introduction to Econometric Theory, Princeton University Press., page 135). Thus
the minimizer of C,(§) converges to the minimizer of C(8), which we just showed
was 0. Thus the minimizer of n=! ¥ In(f(Y;, 0) converges to 6,.

— Sketch of Asymptotic Normality

* First
1

vn
follows immediately from applying the CLT to Y s;(6).
*x Next

Sn(8o) 5 N(0,Z(8,))

954(6)

60 (emle - 00)

Sn(émle) = Sn(eo) +




where 0 is between 6 and gmle- Since Sn(gmle) =0,

\/ﬁ(gmle - 90) = —’1_85('9#(6)']—1[%871(90)]
and -
19540y 2 7(6,)

(LLN, CMT, Consistency of gmle). Thus

\/ﬁ(amle - 00) 'u'l" N(Oaf(‘%)_l)
by Slutsky’s Theorem.

— These results also hold for vector éme and vector values S, (6,), etc.

3.0.1 Examples (to be worked out in class)
e iidN(u,0?)
e Binomial (n,p)

e Uniform [0, 6]

4 Method of Moment Estimators
Suppose Y;,i = 1,...,nis a sequence of #id(u,X) random I x 1 vectors.

e The method of moments estimator of pis
ﬁmm =n"! Z Y:.

From the LLN and CLT, we have

—~ as
Hmm — M

and .

V(fimm — 1) = N(0,Z).
Notice that the estimator can be constructed and these properties obtained without
knowing very much about the probability distribution of Y. ‘

e Now suppose that u = h(6,) where pis I x 1, 0, is k x 1with k.g l. Our goal is the
estimate 6,. A Method of Moments estimator can be obtained by solving

mein Jn(9)



where

TO) = 23— @) %im h(6

i—

3

= (Y —h(9))'(Y - h(6))

Let 0., denote the method of moments estimator. The properties of 8., can be
derived in a way that parallels the discussion of the maximum likelihood estimator.

— Consistency follows by arguing that J,(f#) — J(6) and that J() is minimized at
0=26,.

— Asymptotic normality is proved using the following steps

*x 1. Show the gradient evaluated at 6, satisfies a CLT.
The gradient is

8J,(6) oh(6).,
9a(6) = =g~ = —2A=5g 1 (V = h(9))
so that
Viiga(89) = 275G AT - he)] 4 N0, 42 e 2y

2. Linearize gn(émm) around g¢,(6,) and solve for Orrm.-

~ _ 3gn(§) )
9n(Omm) = gn(6o) + 90’ (Ormm — 6o)

where 6 is between 6, and 6.

3. Show (~)
0gn(0) »
20 — 2H
where Oh(6.)., Oh(6,)
H=1"56"12¢ "
a constant, non-singular matrix.
9gn(0) _ ,ON(6)., . 0h(6) v _

where my,(6) denotes the derivatives of Oh(6)/06" with respect to 6. Eval-
uating this expression at 6 = 6,, the second term vanishes in probability
and the first term is 2H.




4. Write
Vim0 = 2212 g 0] 4 (0, B o)y 04D 1
so that
O > N(6,,V5)
where
_ -1 (9h(90) ! ah’(e) -1



1 General Framework

Suppose that we have two competing hypotheses about the distribution of a random variable
Y :

Hypothesis 1 will be called the Null and is written as

H,:Y ~ F,(Y)

e Hypothesis 2 will be called the Alternative and is written as

H,:Y ~F,(Y)

o It is useful to categorize the errors in inference that we can make

— We can say that H, is true when H,is true. This is called Type I Error
— We can say that H, is true when H,is true. This is called Type 2 Error

. e We will consider tests based on realizations of the random variable Y.

— Specifically, we will define a region of the sample space, say W, and
* Reject H, (Accept H,)if Y e W
* Otherwise Reject H, (Accept H,)

— Wis called a Critical Region

e Our goal is to find procedures for choosing W to minimize the probability of making
errors. However, we can also always make the probability of type 1 error smaller by
making W smaller, and make the probability of type 2 error smaller by making W
larger.

— A standard procedure in test design (procedures for choosing W) is therefore to
fix the probability of type 1 error at some pre-specified value, and choose the
critical region to minimize the probability of type 2 error.

— The pre-chosen probability of type 1 error is called the size of the test
— The probability of accepting H, when H, is true is called the power of the test.
* Power =1 — P(type 2 error)

— The hypothesis testing design problem is: Choose a test to maximize power subject
to a pre-specified size.



2 Likelihood Ratio Tests and the Neyman-Pearson Lemma

The Neyman-Pearson Lemma says that power is maximized, subject to a size constraint, by
choosing the critical region based on the likelihood ratio

La(Y)

Lo(Y)

LR(Y) =

where £,(Y) and £,(Y") are the likelihoods under the alternative and null, respectively. The
critical region for a test with size a is

Wo ={Y|LR(Y) > co}
where ¢, is chosen so that
P{LR(Y) > co|Y ~ F,} =«

The proof of this result is easy:

Suppose the random variables have a continuous distribution with density f,and f,
under the alternative and null. Then £,(Y) = f,(Y) and L,(Y) = fo(Y). Let W, denote
the NP critical region. Let X, denote any other critical region with size a. Note

Wo = (Wa N Xa) U (Wa N X,)

and .
Xo= (XaNWy) U (Xq NW,)
Now:
= o dy = / o d
a= [ f)dy= [ o)y
which implies

Joos oy = [ folw)dy

X o

But, for any Y € W, (and hencein Y € (W,N Xa)), fa(Y) > cafo(Y), and for any Y € W,
(and hence in Y € (X, NW,)), fu(Y) < cafo(Y). Thus

/Waﬂch faly)dy > /X i fa(y)dy

adding back in [, x. fa(y)dy yields

PY €WolY ~F) = [ L)y > [ folw)dy = P(Y € XJY ~ Fo)



3 Parametric Restrictions

Write the density of Y as f(y,0), where 0 is a k x 1vector of parameters. Suppose 6 € ©,

where
H,:0€06,

H,:0€0,
where © = ©,U 6, with ©,N 6, = 0.

e Example: Y; ~iidN(u,1),i=1,...,n
Ho:p=p,

Ho:p=pa
with p, # pe. Note

n

Pl = (2m)"F expl—3 > (3i — )]

and thus -
Ir(Y) = In(LR(Y))= %[Z(Y; = pto)* = D_(¥i = pta)’]
= a(Ho, Ha) + Z Yi(pta — o)

and thus when p, > p, the LR test rejects for large values of 3" Y;, or equivalently
large values of Y = n=! T Y;. Thus we can write the LR testing procedure as

— Reject H, when Y > ¢, where c, is chosen so that

— — 1
P(Y > ¢,|Y ~ N(po, ;) =a
That is, the probability is calculated under the assumption that the sample was
drawn from the null distribution.

— Notice that the critical region is the same for any H, with p, > p,. That is, we
use the same critical region for

Ho:p=po

H,:p>po

Since the LR critical regions are the same for all of the simple hypotheses making
up H, and each is most powerful, then the LR procedure is said to be Uniformly
Most Powerful for H, vs. H,in this instance. This is a general property of LR
tests for simple null hypotheses versus “one-sided” alternatives.



. e A useful summary of testing procedure for the case
H,:0=90,

H,:0+#6,
is a “Power Function” which shows how the power of the test changes as a function of

0.

e Some Jargon:

— When O, contains a single point, then the null hypothesis is said to be simple.
When ©, contains more than one point, then the null is said to be a composite.
Similarly for the alternative. (H, : u > u, is a composite alternative.)

— The general form of the likelihood ratio used for testing is

_ maxgeeo, £(0)

LR =
maXgeo, [:(9)

— A test is consistent for H, : 6 = 0,vs. H, : 0 = 6,if Power'— 1 as n — o0.
x Exercise: show the LR test for the normal mean is consistent
— A test is biased if power < sizefor some 0 € O,
' — Suppose 0, a vector, is partitioned as 6 = (6,,6;), where 6; € ©;, under H,, but
0, is unrestricted. A critical region (or test) is Similar if

P(Y € W,|6,,,62)

does not depend on 6s.

+ In the normal mean example, suppose that o2 is unknown. The LR test is
not similar, since the distribution of Y depends on o?

x At —test for a normal mean is similar. (The distribution of the test statistic
does not depend on o?).

x A test statistic with a distribution that does not depend on nuisance param-
eters is said to be pivotal

— A test is Invariant if the results are invariant pre-specified transformations of the
data.

*x The t-test for the normal mean problem
H,:p=0versus H,: p >0

is invariant to transformations of the form X = aY where a > 0.



4 Likelihood Ratio Test Statistics

We are interested in testing
H,:0=26,versus H, : 0 # 6,

where 6 is a k x 1 vector using a likelihood ratio test. To carry the test we have to choose
the critical region W or equivalently, the critical value c,. Recall ¢, is determined by the
requirement that P(LR > ¢,|H,) = a, and thus to determine the critical value we need to
know the probability distribution of LR when the null hypothesis is true. We now develop
a large-sample approximation to solve this problem.

Let 6 = arg maxg L(6) denote the MLE of 6 and write the maximized likelihood ratio as

L)
LR =16,

Define the Likelihood Ratio Statistic as
€Lr = 2(I(LR)) = 2[La(6) — Ln(60)]

where L,(0) = In(L£()). Since £, g is a monotonic transformation of the likelihood ratio, the
LR test can be implemented by rejecting the null when £ exceeds a pre-specified critical
value.

To derive the approximate distribution of {1 r under the null hypothesis, write

,0°L n(9)

8060’ (8 — )

Ln(8) = Lo(@) + (6, — 5)'3L5(§9) Lo, — gy 2 Lal6)

where @ is between 0,and 0. Since

-~

OLn(6) _
a0 0
_ " /aan(é) o
gLR - —(0 - 90) 6089/ (0 - ?’O)
~ 1 62L,(0)

= Wl - 0] [~ o VA - 0,)]

From our earlier results

V(@ - 6,)] 2 N(0,Z(6,)7Y)

and , )
16L( 0*In f(Y;,0) pH, =
0006 )~ Z 5600' = I(0)
so that
§LR § Xk

(This final result follows from noting that 1 g is asymptotically a quadratic form of a N(0,7Z)
variable around the inverse of it’s covariance matrix.)



| .

5 Wald Test Statistics

A close cousin of the LR statistic is the Wald statistic

R 2
6w = (- 01- 25 o,

which differs from {1 g only because the estimated information matrix is evaluated at 0 rather
than 6. Since both 6 and 8 converge in probability to 8, under the null,

H
Ew "5 ELr

The motivation behind the Wald test is straightforward

V@ —6,) "2 N0, T

so that
64 N, z h
Recall | 9°L, © )
IZ“E[n 2606
thus 921 (6.)
nl=-El=555

Dropping the expéctation operator £ and evaluating the second derivative matrix at 7 yields
the approximation

aH., 32Ln(‘§) -1

N(907[ 6960, ] )
so that R
~ 02L,(6),

§W = (0 - 00),[_ 5600’ J(o -0 ) aHo Xlzc

When the alternative is true, then 6~ 0, # 0, and so we expect large positive values of &y
and £, r and hence the null is rejected in favor of the alternative for large values of the test
statistics.

6 Score/Lagrange Multiplier Test Statistic

Another approximation to £pg is give by the Score or Lagrange Multiplier test statistic:

2
b = 126 =g} 1(s, 0,)
1 , 32L( o)1 1
- ["\/_ﬁsn(eo)] n 9006 ] [\_/—"ﬁsn(eo)]



Since 1

d.H, =
%Sn(ﬂo) b d N(O,I)

and 2r (5
_10Ln6o); ptte 7

n 00060

then .

Em N xE

follows directly. It is also straightforward to show (you should) that

7H0 1Ho
Eone P57 €L P Ew
An alternative form of the LM statistic uses another approximation for Z
= 1
xS ~ PEACAEACAS

Since
Sn(0o) = 231(90)

this version of LM test statistic can then be written as

€ = [D_5:(00)'[D_ 5:(86)5:(66) 171D s:(60)]

In the second part of this course, you will recognize this as the fitted sum of squares from
the regression of a vector of 1’s onto s;(6,).

7 Confidence Intervals

A (1 — a) x 100% confidence interval for 6 is the set of values of § that cannot be rejected,
when taken as the null values for a test with size a. These are easily calculated from the
Wald Statistic. Let o a

o _ 1 0°La(6), 4

V=565
denote the estimated covariance matrix from 8. Then the Wald statistic is

Ew = (0—0,)V 10 -6,
and H, : 6 = 6,is not rejected using a test of size aif

gW S Xi,l—a
where xi,_, denotes the 1 — a quantile of the x distribution. The confidence interval is
therefore R L
{61(6 —0)V0 - 6) < XZ1-a)

which is recognized as the interior of an ellipse centered at 6 = 6.

In the one dimensional case (k = 1), the normal distribution can be used in the place of
the x? yielding ~ o ~ .

{010 — Z1-sV72 <9< 0+ 27 sV2}

where Z;_s denotes the 1 — § ordinate of the N(0, 1) distribution.



8 Nuisance Parameters in Testing

In many application a null hypothesis specifies values for some the parameters but leaves
the other unknown parameters unrestricted. How does this affect the testing procedures
discussed above? '

Let 0 denote a p x 1 vector of unknown parameters partitioned as

where 6; is k x 1 and ;s (p — k) x 1. Suppose that the hypotheses of interest are
H,: 0, =0y,versus Hy : 61 # 61,

with 6, unspecified under the null and alternative.
Let ’ R
§ = arg max L(0)

and

0 = arg max L(0) subject to 6; = 6, ,

and partition these as

The LR statistic is ~ B
§Lr = 2[L(6) — L(0)]

and the Wald statistic is
Ew = [\/7_1(51 - 91,0)]'[711]_1[\/5(51 —01,0)]

where

A 21 =22

— 711 712
|7 =]

Since ~
\/ﬁ(e - 00) dﬂo N(Oaj_l)
w Xi

follows immediately.
Before working out the distribution of the LR statistics, first some preliminary calcula-

tions. Let 5a(6)
- 90 — nl\Yo
S ( ) [ Sn2(90) }
where OLn(60,) OLn(6,)
Sn1(6,) = 20, and Sp2(0,) = 26,



and recall N L
Snl(g) 4 4 N 0 Iu Iy
n2(9 ) 0 )| I Iy

V= 8) =T Su(60)] + 0,1)

From earlier we have

Also
0Sn2(61.0, 92)

SnZ (01,07 92) = Sn2(01,07 92,0) 692

(9 62 o)

where 05 is between 52 and 6, ,. Thus,

~ — 1
Vn(fy — 6,,) = 1'22‘1[\/—775112(91,0, 62.0)] + 0p(1)

and 05,1 (610,78

Snl (91,07 52) = Snl (el,oa 92,0) M(92 02,0)

00,
so that 95,0
1 ~ 1 1 0, 0
%Snl (el,m 62) = % nl(el,m 92,0) _u]f 92 - 02 o)
1 ~ = = _S'nl(el.o 02.0)

‘—‘Sn 0 070 = I — 7121 -1 v o

\/ﬁ 1( 1 2) [ 12522 ] [ ﬁSnZ(el,o,HQ,o) |
So that 1

ﬁsm(el,o, 8;) %5 N(0,ABA)

where

A=[I TpT7)and B=1T
A straightforward calculation shows
ABA' = [Ty — T15T92 I

The Score Test can then be formed as

1 R _
§im = [%Snl(el,o,ez)} [Z11 — Z12Zo ' Zan] 7Y nSn1(01,0792)]

\/"'
Using any of the estimators of Z that we discussed last time.
Finally, from last time

2(La(0) — La(6,)] = [\/_ (6 — 0,)/Z[v/n(B — 6,)] + 0,(1)
71 L o
[\/— n(00)]'Z [\/ﬁS"w")H »(1)
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and a similar calculation shows

2[Ln(0) — La(6,)] = [vn(Bs — 020) Taz[v/n(B; — 82,,)] + 0,(1)
1 g L ]
= [% '12(01.0,02,0)] [ Z22] {ﬁ5n2(91,o,92,o)]+ (1)

so that

~

&tr = 2[Ln(8) — La(0)] =
1 —_1 —
_neo, neoeolz —l_neo o
[\/ES( N'Z Sn2(01,0102,0)] [Z22] [\/7—152( 1,0, 02,0)] + 0p(1)
and a straightforward calculation using the partitioned inverse formula, shows that this is
the same as the LM statistic (and Wald statistic) up to a term that is o0,(1).

1 1 1
[% Sn (00)] - [\/_’;l-

9 Testing Restrictions on Parameters
Thus far we have considered testing restrictions on 6 that take the form
0=20,
which restricts all of the elements or 6, or
| Ik Okxpl =61,
which restricts the first k elements. Suppose that instead we are interesting in the restriction
RO=r

where Ris a k X p matrix with full row rank and k < p. If £ = p, then since R = r implies
that § = R™!r, we are just in the first situation with 6, = R~!r.
When k& < p then we are in the second situation. To see this, consider multiplying 6 by
a full rank matrix G with
R
vy

where Rt is a (p — k) x pmatrix with rows with full row rank and with rows orthogonal
to the rows of R. (There are a variety or ways to compute the rows of Rt.) Then we can

reparametrize the likelihood using
6=Go

instead of §. Partitioning ¢ as

where 6; = Rfand 6, = R'#. The hypothesis that R# = rcorresponds to §; = rwith
6o unrestricted.
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There is not need to explicitly re-parameterize the model to carry out the test, once you
note that the reparamerization will lead to

5§=Go

a straightforward calculation (that you should verify) shows that the Wald statistic is given
by: R
~ 2L, (0) ~
o — Y _ 2 En\"/y-1pn-1 0 —
and the formula for {1z is unchanged except for the fact that 6 is now the MLE subject to
the constraint that Rf = r. Finally

€ = [ (@) [D_ 5:(8)s:(8)171 [ i(8))

can be used to construct the LM statistic. (Exercise: show this.)



